Effects of sequence on repeat expansion during DNA replication.
نویسندگان
چکیده
Small DNA repeat tracts are located throughout the human genome. The tracts are unstable, and expansions of certain repeat sequences cause neuromuscular disease. DNA expansions appear to be associated with lagging-strand DNA synthesis and DNA repair. At some sites of repeat expansion, e.g. the myotonic dystrophy type 2 (DM2) tetranucleotide repeat expansion site, more than one repeat tract with similar sequences lie side by side. Only one of the DM2 repeat tracts, however, is found to expand. Thus, DNA base sequence is a possible factor in repeat tract expansion. Here we determined the expansion potential, during DNA replication by human DNA polymerase beta, of several tetranucleotide repeat tracts in which the repeat units varied by one or more bases. The results show that subtle changes, such as switching T for C in a tetranucleotide repeat, can have dramatic consequences on the ability of the nascent-strand repeat tract to expand during DNA replication. We also determined the relative stabilities of self-annealed 100mer repeats by melting-curve analysis. The relative stabilities did not correlate with the relative potentials of the analogous repeats for expansion during DNA replication, suggesting that hairpin formation is not required for expansion during DNA replication.
منابع مشابه
Expandable DNA Repeat and Human Hereditary Disorders
Background & Aims: Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA, including fragile X syndrome, myotonic dystrophy, Huntington’s disease, and Friedreich’s ataxia. One the most frequently occurring types of mutation is trinucleotide repeat expansion. The present study was conducted with the aim of investigating the cause...
متن کاملEffects of temperature, Mg2+ concentration and mismatches on triplet-repeat expansion during DNA replication in vitro.
The human genome contains many simple tandem repeats that are widely dispersed and highly polymorphic. At least one group of simple tandem repeats, the DNA trinucleotide repeats, can dramaticallyexpand in size during transmission from one generation to the next to cause disease by a process known as dynamic mutation. We investigated the ability of trinucleotide repeats AAT and CAG to expand in ...
متن کاملReplication and expansion of trinucleotide repeats in yeast.
The mechanisms of trinucleotide repeat expansions, underlying more than a dozen hereditary neurological disorders, are yet to be understood. Here we looked at the replication of (CGG)(n) x (CCG)(n) and (CAG)(n) x (CTG)(n) repeats and their propensity to expand in Saccharomyces cerevisiae. Using electrophoretic analysis of replication intermediates, we found that (CGG)(n) x (CCG)(n) repeats sign...
متن کاملMicrosatellite (SSR) amplification by PCR usually led to polymorphic bands: Evidence which shows replication slippage occurs in extend or nascent DNA strands
Microsatellites or simple sequence repeats (SSRs) are very effective molecular markers in population genetics, genome mapping, taxonomic study and other large-scale studies. Variation in number of tandem repeats within microsatellite refers to simple sequence length polymorphism (SSLP); but there are a few studies that are showed SSRs replication slippage may be occurred during in vitro amplifi...
متن کاملDNA structures, repeat expansions and human hereditary disorders.
Expansions of simple DNA repeats are responsible for more than two dozen hereditary disorders in humans, including fragile X syndrome, myotonic dystrophy, Huntington's disease, various spinocerebellar ataxias, Friedreich's ataxia and others. During the past decade, it became clear that unusual structural features of expandable repeats greatly contribute to their instability and could lead to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 31 24 شماره
صفحات -
تاریخ انتشار 2003